联邦学习是一种分布式人工智能模型训练技术。《基于联邦学习的电力视觉检测系统要求和框架》国际标准将联邦学习技术与电力视觉检测业务相结合,构建了一套分布式模型训练方法,能够有效解决数据孤岛带来的算法模型精准度不高等问题,从而提升电力设备智能化运维水平,提高电网智能化、安全运行能力。
“人工智能需依靠大量的数据训练来提升算法的准确性,但在实际应用中,视觉检测模型面临着训练数据分散、视觉数据传输成本高、训练数据安全难以保证等问题。”《基于联邦学习的电力视觉检测系统要求和框架》标准召集人、浙江省王红凯技能大师工作室领衔人王红凯说。
王红凯介绍,联邦学习的优势在于能够打破数据孤岛,允许多个数据主体在不共享数据的情况下,跨主体开展视觉检测模型训练,有效提升电力系统各《软件彩票app开发》环节设备维护和异常行为监测的准确率和检测效率。